
DOMINO: Databases fOr MovINg Objects tracking
 Ouri Wolfson Prasad Sistla Bo Xu Jutai Zhou Sam Chamberlain
 EECS Department, University of Illinois at Chicago Army Research Laboratories

 {wolfson,sistla,bxu,jzhou}@eecs.uic.edu wildman@arl.mil

1. BACKGROUND
Consider a database that represents information about moving
objects and their location. For example, for a database
representing the location of taxi-cabs a typical query may be:
retrieve the free cabs that are currently within 1 mile of 33 N.
Michigan Ave., Chicago (to pick-up a customer); or for a trucking
company database a typical query may be: retrieve the trucks that
are currently within 1 mile of truck ABT312 (which needs
assistance); or for a database representing the current location of
objects in a battlefield a typical query may be: retrieve the friendly
helicopters that are in a given region, or, retrieve the friendly
helicopters that are expected to enter the region within the next 10
minutes. The queries may originate from the moving objects, or
from stationary users. We will refer to applications with the above
characteristics as moving-objects-database (MOD) applications,
and to queries as the ones mentioned above as MOD queries.

In the military MOD applications arise in the context of the digital
battlefield (see [1]), and in the civilian industry they arise in
transportation systems. For example, Omnitracs developed by
Qualcomm (see [2]) is a commercial system used by the
transportation industry, which enables MOD functionality. It
provides location management by connecting vehicles (e.g.
trucks), via satellites, to company databases. The vehicles are
equipped with a Global Positioning System (GPS), and they
automatically and periodically report their location.

2. RESEARCH ISSUES
Currently, MOD applications are being developed in an ad hoc
fashion. Database Management System (DBMS) technology
provides a potential foundation upon which to develop MOD
applications, however, DBMS's are currently not used for this
purpose. The reason is that there is a critical set of capabilities
that are needed by MOD applications and are lacking in existing
DBMS's. The following is a discussion of the needed capabilities.

(A) Location Modeling.

Existing DBMS's are not well equipped to handle continuously
changing data, such as the location of moving objects. The reason
for this is that in databases, data is assumed to be constant unless
it is explicitly modified. For example, if the salary field is 30K,
then this salary is assumed to hold (i.e. 30K is returned in
response to queries) until explicitly updated. Thus, in order to

represent moving objects (e.g. vehicles) in a database and answer
queries about their location, the vehicle's location has to be
continuously updated. This is unsatisfactory since either the
location is updated very frequently (which would impose a serious
performance overhead), or, the answer to queries is outdated.
Furthermore, assuming that the location updates are generated by
the moving objects themselves and transmitted via wireless
networks, frequent updating would also impose a serious wireless
bandwidth overhead.

(B) Linguistic Issues.

Generally, a query in MOD applications involves spatial objects
(e.g. points, lines, regions, polygons) and temporal constraints.
Consider for example the query: “Retrieve the objects that will
intersect the polygon P within the next 3 minutes”. This is a
spatial and temporal range query. The spatial range is the polygon
P, and the temporal range is the time interval between now and 3
minutes from now. Similarly, there are spatio-temporal join
queries such as: “Retrieve the pairs of friendly and enemy aircraft
that will come within 10 miles of each other, and the time when
this will happen.” Traditional query languages such as SQL are
inadequate for expressing such queries. Although spatial and
temporal languages have been studied in the database research
community, the two types of languages have been studied
independently, whereas for MOD databases they have to be
integrated. Furthermore, spatial and temporal languages have been
developed for data models that are inappropriate for MOD
applications (due, for example, to the modeling problem
mentioned above).

(C) Indexing.

Observe that the number of moving objects in the database may be
very large (e.g., in big cities with millions of inhabitants). Thus,
for performance considerations, in answering MOD queries we
would like to avoid examining the location of each moving object
in the database. In other words, we would like to index the
location attribute. The problem with a straight-forward use of
spatial indexing for this purpose is that the continuous change of
the locations implies that the spatial index has to be continuously
updated. This is clearly an unacceptable solution.

(D) Uncertainty/Imprecision.

The location of a moving object is inherently imprecise because,
regardless of the policy used to update the database location of the
object (i.e. the object-location stored in the database), the
database location cannot always be identical to the actual location
of the object. This inherent uncertainty has various implications
for database modeling, querying, and indexing. For example, for
range queries there can be two different kinds of answers, i.e. the
set of objects that "may" satisfy the query, and the set that "must"
satisfy the query. Thus, different semantics should be provided for
queries. Another approach would be to compute the probability
that an object satisfies the query. Although uncertainty in

databases has been studied extensively, the new modeling and
spatio-temporal capabilities needed for moving objects necessitate
revisiting existing solutions.

Additionally, existing approaches to deal with uncertainty assume
that some uncertainty information is associated with the raw data
stored in the database. How is this initial uncertainty obtained?
For MOD applications the question becomes how to quantify the
location uncertainty? How to quantify the tradeoff between the
updating overhead and the uncertainty/imprecision penalty, and
how frequently should a moving object update its location. How
to handle the possibility that a moving object becomes
disconnected and cannot send location updates?

3. THE DOMINO APPROACH
Therefore, there is a critical set of capabilities that have to be
integrated, adapted, and built on top of existing DBMS's in order
to support moving objects databases. The objective of our
Databases fOr MovINg Objects tracking (DOMINO) project is to
build an envelope containing these capabilities on top of existing
DBMS's. The key features of our approach are the following.

(1) Dynamic Attributes.

In our opinion, the key to overcoming the location modeling
problem is to enable the DBMS to predict the future location of a
moving object. Thus, when the moving object updates the
database, it provides not only its current location, but its expected
future locations. For example, if the DBMS knows the speed and
the route of a moving object, then it can compute its location at
any point in time without additional updates.

Thus, we proposed a data model called the Moving Objects
Spatio-Temporal (or MOST for short) model. Its novelty is the
concept of a dynamic attribute, i.e. an attribute whose value
changes continuously as time progresses, without being explicitly
updated. So, for example, the location of a vehicle is given by its
dynamic attribute which consists of motion plan (e.g., north on
route 481, at 60 miles/hour). In other words, we devise a higher
level of data abstraction where an object's motion plan (rather
than its location) is represented as an attribute of the object.
Obviously, the motion plan of an object can change (thus the
dynamic attribute needs to be updated), but in most cases it does
so less frequently than the location of the object. We devised
mechanisms to incorporate dynamic attributes in existing data
models and capabilities to be added to existing query processing
systems to deal with dynamic attributes.

(2) Spatial and Temporal Query Language.

We introduced a query language called Future Temporal Logic
(FTL) for query and trigger specifications in moving objects
databases. The language is natural and intuitive to use in
formulating MOD queries, and it is basically SQL augmented
with temporal operators (e.g. SOMETIME-DURING, UNTIL,
LATE) and spatial operators (e.g. INSIDE-REGION).

(3) Indexing Dynamic Attributes.

We propose the following paradigm for indexing dynamic
attributes. The indexing problem is decomposed into two sub-
problems; first is the geometric representation of a dynamic
attribute value (i.e. a moving object's speed, initial location, and
starting time) in multidimensional time-space, and second is the
spatial indexing of the geometric representation. The geometric
representation subproblem concerns the question: how to

construct the multidimensional space, and how to map an object
(more precisely, a dynamic attribute value) into a region (or a line,
or a point) in that space, and how to map a query into another
region in that space, so that the result of the query are the objects
whose regions intersect the query region. The object region is
updated only when the dynamic attribute is explicitly updated
(e.g. when the speed of the object changes) rather than
continuously. The spatial indexing subproblem concerns the
question how to find the intersection-of-regions mentioned above
in an efficient way. The latter subproblem can be solved by an
existing spatial indexing method, but it is an open problem which
method is most appropriate for a particular geometric
representation and dynamic attribute values distribution. We have
devised several solutions to the geometric representation
subproblem.

(4) Uncertainty/Imprecision Management.

We extended our data model, query language, and indexing
method to address the uncertainty problem. The data model was
extended by enabling the provision of an uncertainty interval in
the dynamic attribute. More specifically, at any point in time the
location of a moving object is a point in some uncertainty interval,
and this interval is computable by the DBMS. Thus, the DBMS
replies to a query requesting the location of a moving object m
with the following answer A: "m is on route 698 at location (x,y),
with an error (or deviation) of at most 2 miles". The bound b on
the deviation (2 miles in the above answer) is provided by the
moving object, i.e. the object commits to send a location update
when the deviation reaches the bound.

The FTL language is also extended. We devised two extensions, a
qualitative one and a quantitative one. In the qualitative extension,
two kinds of semantics, namely MAY and MUST semantics, are
incorporated, and the processing algorithms are adapted for these
semantics. The indexing method is also extended to enable the
retrieval of both, moving objects that "must be" in a particular
region, and moving objects that "may be" in it. In the quantitative
extension, the location of the moving object is a random variable,
and the uncertainty interval, the network reliability and other
factors are used to determine a density function for this variable.
An algorithm was developed to associate with each object
retrieved in response to a range query, the probability that the
object satisfies the query.

We also addressed the question of determining the uncertainty
associated with a dynamic attribute, i.e. the bound b mentioned
above. We proposed a cost based approach which captures the
tradeoff between the update overhead and the imprecision. The
location imprecision encompasses two related but different
concepts, namely deviation and uncertainty. The deviation of a
moving object m at a particular point in time t is the distance
between m's actual location at time t, and its database location at
time t. For the answer A above, the deviation is the distance
between the actual location of m and (x,y). On the other hand, the
uncertainty of a moving object m at a particular point in time t is
the size of the interval in which the object can possibly be. For the
answer A above, the uncertainty is 4 miles. The deviation has a
cost (or penalty) in terms of incorrect decision making, and so
does the uncertainty. The deviation (uncertainty) cost is
proportional to the size of the deviation (uncertainty). The
tradeoff between imprecision and update overhead is captured by
the relative costs of an uncertainty-unit, a deviation-unit, and an

update-overhead unit. Using the cost model we propose update
policies that establish the uncertainty bound b in a way that
minimizes the expected total cost. Furthermore, we propose an
update policy that detects disconnection of the moving object at
no additional cost.

4. THE DEMONSTRATION
We will demonstrate the following features of Domino:

4.1 System Architecture
Our Domino system is the third in a three-layer architecture (see
Figure 1). The first layer is an Object Relational DBMS. The
database stores the information about each moving object,
including its plan of motion. The second layer is a GIS that adds
capabilities and user interface primitives for storing, querying, and
manipulating geographic information. The third layer, Domino,
adds temporal capabilities, capabilities of managing the
uncertainty that is inherent in expected future motion plans, and a
simulation testbed. Currently, Domino uses the Informix DBMS
and the Arc-View GIS.

Figure 1: System architecture

4.2 Motion Plan Specification
The motion plan of a moving object is a sequence of location-time
points, (p1,t1), (p2,t2),...(pn,tn), indicating that the object will be
at geographic point p1 at time t1, at geographic point p2 (closer to
the destination than p1) at time t2 (later than t1), etc. The plan is
interactively specified by the user on a GIS on a map. The moving
object updates the database whenever the deviation from the plan
exceeds a prespecified bound given in terms of distance or time.
The update includes a revised plan and possibly a new bound on
the deviation. Maintaining plan information enables queries
pertaining to both, the current and future locations of the moving
object, for example:

Q1 = Retrieve the moving objects that are expected to be in a
given region R sometime during a given time interval I.

Also, queries may pertain to future arrival times, for example:

Q2 = Retrieve the moving objects that are expected to be late at
their destination by more than one hour.

4.3 Spatio-temporal Capabilities
We will demonstrate the spatial and temporal primitives of the
FTL query language and its answer-display screen. The primitives
are given in graphical format, and they can be combined with
textual SQL in a natural and intuitive way. For example, in the
query Q1 above the region R may be drawn with a mouse on a
real GIS map, and the time interval I may be specified on a

graphical timeline. Then I and R can be incorporated in the textual
part of an FTL query. Clearly, since FTL is an extension of SQL,
the query can also include regular literals, e.g., WEIGHT > 5000.
Information about the moving objects that satisfy the query is
displayed in textual form, and the location of each such moving
object is displayed as a point on the map.

4.4 Uncertainty
We will demonstrate the capabilities of the FTL query language
and its answer-display screen in dealing with uncertainty. These
include MAY and MUST semantics for queries. In other words,
the query Q1 above can be specified with MAY or MUST
semantics. Under the MAY semantics, an object will be retrieved
if its uncertainty interval intersects the region R sometime during
the interval I. Under the MUST semantics, an object will be
retrieved if its uncertainty interval is wholly contained in the
region R sometime during the interval I. The location of each
moving object retrieved is displayed on the map, along with the
uncertainty interval currently associated with the location.

Simulation Testbed

We will demonstrate a simulation testbed in which the
performance of a moving objects database application can be
evaluated. The input to the simulation system is a set of moving
objects, their motion plans, their speed variations over time, the
cost of deviation, the cost of uncertainty, the cost of
communication, the wireless bandwidth distribution over the
geographic area, and the location update policy used by each
moving object. The objective is to determine the performance of
MOD queries, as well as to answer questions such as: How many
objects can be supported for an average imprecision that is
bounded by x, and a wireless bandwidth allocated to location
updates that is bounded by y? Or, given n moving objects and a
bound of 10% on the imprecision, what percentage of the
bandwidth is used for location updates?

5. REFERENCES
[1] S. Chamberlain, Model-Based Battle Command: A Paradigm

Whose Time Has Come, 1995 Symp. on C2 Research and
Technology, June 1995.

[2] OmniTRACS, Communicating Without Limits,
http://www.qualcomm.com/ProdTech/Omni/prodtech/omnisy
s.html.

[3] O. Wolfson, L. Jiang, P. Sistla, S. Chamberlain, N. Rishe, M.
Deng, Databases for Tracking Mobile Units in Real Time,
Springer-Verlag Proceedings of the Seventh International
Conference on Database Theory (ICDT), Jerusalem, Israel,
Jan. 10-12, 1999.

[4] O. Wolfson, B. Xu, S. Chamberlain, L. Jiang, Moving
Objects Databases: Issues and Solutions, Proceedings of the
10th International Conference on Scientific and Statistical
Database Management (SSDBM98), Capri, Italy, July 1-3,
1998, pp. 111-122.

DOMINO

ArcView GIS

Informix DBMS

